
WWith the current climate of heavy infrastructure
investment, the deregulation of utilities, and the
explosion of the telecommunications industry,
the importance of managing right-of-way asset
information has never been greater. In order
to manage these assets, location information,
grantors, grantees, signers, mortgagees,
mortgagors, recordation data (courthouse, deed
book/page, recordation date, recording fees),
legal description, tax identification numbers,
and other attributes must be tracked. In
addition, documents such as deeds, permits,
and work sketches must usually be maintained
and made easily accessible for an associated
right-of-way asset.

HHooww ttoo

BBuuiilldd
aa WWoorrlldd--CCllaassss

SSoolluuttiioonn
RROOWW IInnffoorrmmaattiioonn SSyysstteemmRROOWW IInnffoorrmmaattiioonn SSyysstteemm

JANUARY/FEBRUARY 2001 • RIGHT OF WAY 19

Computer-based information systems provide an opportunity
to effectively manage these assets. However, because the right
of way problem domain is inherently complex and requires
significant expertise in business processes as well as in the
relevant technologies, software engineering best practices must
be used to successfully guide the specification and development
of right of way information systems.

RRiigghhtt ooff WWaayy PPrroobblleemm DDoommaaiinn
The primary characteristic of the right of way problem

domain is complexity of the business processes. Right of way
assets often involve multiple geographical and political bound-
aries, and there are typically multiple staff roles involved in
asset negotiation and management. In addition, effectively
tracking right-of-way assets also involves multiple documents
such as distribution permits, work sketches, master-supplemental
agreements, tenant-at-will agreements, disclaimers, and quit
claims. There may be multiple: parcels per document, signers
per parcel, locations, recordation entries, crossings, and associated
work order or project.

From a technical perspective, this complexity presents a
significant challenge in data engineering as well as in facilitating
the negotiation and tracking process through the use of imaging,
web-based, and wireless technologies. Also, integration with a
Geographic Information System (GIS) is essential in order to
effectively present multiple views of the asset information.

SSooffttwwaarree EEnnggiinneeeerriinngg BBeesstt PPrraaccttiicceess
The software engineering discipline applies engineering

practices to the specification and development of software
systems. The overall concept is to select a project lifecycle, team
structure, and development platform based on requirements of
the business problem. Software engineering is still relatively
immature compared with other engineering disciplines.
However, there are some efforts under way to certify software
engineers with a professional engineer (PE) designation similar
to PE certifications for other engineering specialties.1

The software engineering approach differs from pure
programming by focusing on up-front activities, sometimes
referred to as the fuzzy front end.2 These activities include
requirements engineering, architectural design, and software
quality assurance. Research at IBM has shown that projects
which focus early on these activities generally have
optimal project schedules.3 That is, there is no prolonged
period of rework and bug fixes at the end of a project. Chart 1
illustrates this approach.

SSOOFFTTWWAARREE EENNGGIINNEEEERRIINNGG VV.. SSTTAANNDDAARRDD AAPPPPRROOAACCHH

RReeqquuiirreemmeennttss EEnnggiinneeeerriinngg
The most crucial phase of a software development project is

requirements engineering. This phase involves meeting with
clients to determine what the system is going to do as well as
determining system attributes such as response time and usability
requirements. Specifying requirements as precisely as possible
is important since research shows that it costs anywhere from
10 to 100 times more to make a change later in the system
development process.4

Many techniques are used to drive the requirements
engineering process, including structured questionnaires,
prototyping, and joint application design sessions. The essential
problem is communication among humans, which is by its
nature ambiguous. According to Fred Brooks, one of the early
pioneers in software engineering:5

“The most difficult work of software development is not
in representing the concepts faithfully in a specific computer
language (coding) or in checking the fidelity of the represen-
tation (testing). The essence of software development
consists of working out the specification, design, and verifica-
tion of a highly precise and richly detailed set of interlocking
concepts.”
This effort is made more complicated in that clients often do

not know precisely what they want until they see something
implemented. Therefore, it is important to plan for change and
to develop generic structures that allow clients to adjust the
technology to fit business practices as required.

Once requirements have been defined as precisely as possible
and approved by the client representatives, the project moves
into a formal change management process. Change requests
are documented, examined for cost and schedule implications,
and formally approved before they are implemented. Some
research has shown that using a formal change process is one of
the most crucial aspects for eventual project success.6

AArrcchhiitteeccttuurraall DDeessiiggnn
The next project phase consists of designing an appropriate

architecture. Building the right architecture is especially important
in Internet and other distributed systems where many clients
may be using the system at once and, in the case of Internet
systems, where visibility is high and the consequences of system
outages are public. Designing an appropriate architecture
consists of identifying system software components and the
relationships between these components. Vendors frequently
provide generic architectural frameworks, which provide a
foundation for developing a system-specific architecture.
Examples include Microsoft Windows DNA or Sun Java J2EE.

CHART 1

I

M

P

L

E

M

E

N

T

D

E

S

I

G

N

S

P

E

C

I

F

Y

Q

U

A

L

I

T

Y

EE
MM

PP
HH

AA
SS

IISS

SSTTOOFFWWAARREE EENNGGIINNEEEERRIINNGG AAPPPPRROOAACCHH

0% 25-30% 100%

SSTTAANNDDAARRDD PPRRAACCTTIICCEESS

S

U

P

P

O

R

T

20 JANUARY/FEBRUARY 2001 • RIGHT OF WAY

IImmpplleemmeennttaattiioonn aanndd IInntteeggrraattiioonn
Implementation consists of programming and testing the

individual software components. Once these components are
working, they are integrated into a build that is then subjected
to system testing. Testing at both the individual component and
system level consists of white-box testing, or examining the
behavior of the components, and black-box testing, or viewing
the system as a black box with a set of expected outputs based
on a given set of inputs.

SSooffttwwaarree QQuuaalliittyy AAssssuurraannccee
Software quality assurance (SQA) is involved early in a software

development project. SQA activities including assisting
with requirements inspection, participating in design reviews,
developing the system test plan, and testing the various software
components. In addition, SQA is responsible for monitoring
adherence to coding and development standards and compli-
ance with the development methodology. Many commercial
development firms try to test in quality at the end of a project
rather than focus on quality from the start. As described earlier,
this approach typically leads to a long test and fix cycle near the
end of the project.

BBeenneeffiittss ooff tthhee SSooffttwwaarree EEnnggiinneeeerriinngg AApppprrooaacchh
Using software engineering best practices results in systems

that deliver correct business functionality and that are less
expensive in the long run to enhance and maintain. This
approach also encourages client feedback early and often. By
encouraging this feedback, clients participate fully in the
requirements engineering process and to take ownership of the
applications.

Another benefit of this approach is that by engineering a
solution before actually implementing it, any mistakes or
omissions are caught early in the process and are much less
expensive to correct.

CCaassee SSttuuddyy: PPRRIISSMM
An example of applying software engineering best practices

to the right of way domain is the Property Record Information
System Manager (PRISM) developed by Computer Technology
Solutions, Inc. (CTS) for Alabama Power Company (APCO).

APCO is a subsidiary of Southern Company with over
4 million property rights records, increasing at an average rate
of 500 new documents per month. Over the years, multiple
database and paper systems were developed to manage right of
way assets.

“We tried off-the-cuff methods rather than a software engi-
neering approach to build our right-of-way asset management
system and wasted time and money in the process,” says APCO
project manager Wayne Boone. “In addition, field engineers
were not getting the information they need in any kind of a
timely manner, if at all.”

In the fall of 1997, APCO decided to re-engineer and build a
state-of-the-art system to manage property rights. What result-

ed was PRISM, a right-of-
way asset management sys-
tem that allows organiza-
tions to develop and main-
tain an accurate, centralized
record of their property
rights and holdings, and
provides rapid retrieval
and dissemination of
associated permit and deed
documents. With PRISM, a
field request is answered
with a document image in
less than twenty seconds.

Because of the complexity of the domain, the number of
field engineers and other personnel involved, and the lack of
success in past efforts to address all of the relevant business
processes, CTS chose to use working prototypes for require-
ments engineering.

Working meetings were held with over 80 business subject
matter experts to build prototypes that supported actual data
entry of the various property attributes as well as scanning the
associated documents. These prototypes were built with rapid
development tools so that they could be easily changed based
on new knowledge of business requirements. This iterative
process continued until the business experts were satisfied that
the prototypes addressed their business needs. “We first built
the system in clay so that we could mold it before building it in
steel,” says Boone.

For development of the production version, CTS selected
an evolutionary delivery lifecycle model. This approach
involves delivering a build, soliciting client feedback, and then
incorporating this feedback into successive deliveries whenever
possible. Chart 2 illustrates this lifecycle.

EEvvoolluuttiioonnaarryy DDeelliivveerryy LLiiffeeccyyccllee MMooddeell
Data models from the various prototype applications were

combined into a single data model and the various applications
were partitioned into presentation, business, and data layers.
This approach facilitates updates and enhancements as business
requirements change. The primary data retrieval function was
developed as a web-based query application, which could store

ROW INFORMATION SYSTEMS CHART 2

BBuussiinneessss CCaassee

AAnnaallyyssiiss

RReeqquuiirreemmeennttss

AAnnaayyllssiiss

AArrcchhiitteeccttuurraall

DDeessiiggnn

AArrcchhiitteeccttuurraall

DDeessiiggnn

EElliicciitt

CClliieenntt

FFeeeeddbbaacckk

DDeelliivveerr FFiinnaall

VVeerrssiioonn

SSttaaggee nn:: DDeettaaiilleedd DDeessiiggnn,, CCooddee,,

DDeebbuugg,, TTeesstt,, aanndd DDeelliivveerryy

Prototypes were built

with rapid development

tools so that they could

be easily changed based

on new knowledge of

business requirements.

JANUARY/FEBRUARY 2001 • RIGHT OF WAY 21

both pre-defined and ad-hoc queries. This approach supports
setting up the most frequently used queries before delivery.

Software quality assurance activities occurred during both
the prototype and production development phases. The goal
was to uncover at least 95 percent of any software discrepancies
before delivering a build to client representatives. Load and
stress testing were performed to verify response time and other
system behavior.

“PRISM has been immediately accepted by end clients since
they were instrumental in designing the applications and have
ownership of them,” says Boone. “The software engineering
process has contributed greatly to the success of this system.
Also, the field engineers like the fact that we have reduced
turnaround time for inquiries from days to seconds.”

CCoonncclluussiioonn
The software engineering discipline, while still relatively

immature, offers some best practices for using information
technology to support complex problem domains such as
right-of-way asset management. In particular, focusing on
up-front activities such as requirements engineering, architectural
design, and quality assurance helps to achieve optimal project
schedules and to ensure that the system correctly addresses the
business problems. ■

Steve Atkins is President and CEO of Computer Technology
Solutions, Inc. (CTS), a software engineering company specializing
in developing distributed applications. He is an adjunct professor
for both the Department of Computer Science and the School of
Engineering at the University of Alabama at Birmingham. He
earned a BS and MS in Computer Science at the University of
North Texas and an MBA at the University of Pittsburgh. Contact:
(205) 943-6605 Fax: (205) 943-6606. satkins@askcts.com.

NOTES:
1For example, the state of Texas offers a PE for software engineers based on years of experience
and recommendations from current Professional Engineers and is working with the ACM and
IEEE Computer Society to develop a PE examination.
2 Steve McConnell, Rapid Development: Taming Wild Software Schedules (Redmond,
Washington: Microsoft Press, 1996).
3 Capers Jones, Programming Productivity (New York: McGraw-Hill, 1986).
4 Barry W. Boehm and Philip N. Papaccio, “Understanding and Controlling Software Costs,”
IEEE Transactions on Software Engineering, vol. 14, no. 10 (October, 1988).
5 Frederic P. Brooks, Jr., The Mythical Man-Month, Anniversary Edition, (Reading, MA: Addison-
Wesley, 1995).
6 Walker Royce, Software Project Management: A Unified Approach (Reading, MA: Addison-
Wesley, 1998).

